Evaluation of the potential of Hyperion for fire danger assessment by comparison to the Airborne Visible/Infrared Imaging Spectrometer
نویسندگان
چکیده
Parameters derived from remote sensing that can be used to assess fire danger include surface reflectance, live and dead biomass, canopy water content, species composition, and fuel state. Spectral bands and wavelength locations of traditional multispectral data make assessment of fire danger in Mediterranean shrublands difficult, although fire danger parameters have been derived from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. We compare nearly simultaneous acquisition of Hyperion and AVIRIS to evaluate spaceborne monitoring potential of fire danger in Southern California chaparral. Field spectra were acquired to support reflectance retrieval and construct a spectral library for vegetation mapping. Reflectance spectra retrieved from Hyperion and AVIRIS had similar shape and albedo, but SNR was five times higher in AVIRIS. Fuel condition was assessed using the endmember fractions from spectral mixture analysis, with both Hyperion and AVIRIS imaging spectrometer data providing similar fractions and spatial distributions. Hyperion demonstrated good capability for separating spectral signals from bare soil and dry plant litter. Canopy water content was compared using the 980and 1200-nm liquid water bands, the water index, and the normalized difference water index. Results showed that Hyperion is capable of retrieving canopy water at 1200 nm, but demonstrates poor performance at 980 nm. Sensor noise and instrumental artifacts account for poor performance in this spectral region. Overall, full-spectrum measures outperformed band ratios because of a lower sensitivity to sensor noise in individual bands. Species and community mapping showed similar patterns with better accuracy for AVIRIS relative to Hyperion, but with both instruments achieving only 79% and 50% overall accuracy, respectively.
منابع مشابه
Analysis of hyperspectral data for estimation of temperate forest canopy nitrogen concentration: comparison between an airborne (AVIRIS) and a spaceborne (Hyperion) sensor
Field studies among diverse biomes demonstrate that mass-based nitrogen concentration at leaf and canopy scales is strongly related to carbon uptake and cycling. Combined field and airborne imaging spectrometry studies demonstrate the capacity for accurate empirical estimation of forest canopy N concentration and other biochemical constituents at scales from forest stands to small landscapes. I...
متن کاملComparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping
Airborne hyperspectral data have been available to researchers since the early 1980s and their use for geologic applications is well documented. The launch of the National Aeronautics and Space Administration Earth Observing 1 Hyperion sensor in November 2000 marked the establishment of a test bed for spaceborne hyperspectral capabilities. Hyperion covers the 0.4–2.5m range with 242 spectral ba...
متن کاملDaytime Fire Detection Using Airborne Hyperspectral Data
The shortwave infrared region of the electromagnetic spectrum, covering wavelengths from 1400 to 2500 nm, can include significant emitted radiance from fire. There have been relatively few evaluations of the utility of shortwave infrared remote sensing data, and in particular hyperspectral remote sensing data, for fire detection. We used an Airborne Visible InfraRed Imaging Spectrometer (AVIRIS...
متن کاملSpace-based remote imaging spectroscopy of the Aliso Canyon CH4 superemitter
The Aliso Canyon gas storage facility near Porter Ranch, California, produced a large accidental CH4 release from October 2015 to February 2016. The Hyperion imaging spectrometer on board the EO-1 satellite successfully detected this event, achieving the first orbital attribution of CH4 to a single anthropogenic superemitter. Hyperion measured shortwave infrared signatures of CH4 near 2.3 μm at...
متن کاملPotential Applications of the Sentinel-2 Multispectral Sensor and the Enmap Hyperspectral Sensor in Mineral Exploration
Imaging spectroscopy is a widely used tool in mineral exploration today where exploration companies offer the full service package to their clients: (data acquisition, preprocessing and product delivery). These exploration projects rely mainly on airborne imaging spectrometers such as Hymap, AISA or HySpex. This data is usually scarce and expensive and may not be available to academic research....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Geoscience and Remote Sensing
دوره 41 شماره
صفحات -
تاریخ انتشار 2003